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Executive Summary 
Overview of findings 
The results of this study concur with the general conclusion of previous scientific 
evaluations for Australia and globally, that the nature of drought events is likely to 
change in south-eastern Australia over the 21st century. The most likely shift is towards 
more prolonged and severe droughts for most of NSW, given the influence of 
anthropogenic global climate change. 

While the overall scenario is for worsening risk of drought across most of the state, this 
study found there are small areas within NSW, mainly the higher elevations of the 
tablelands and eastern ranges, where changes appear to be less severe. This finding is 
unique in the context of previous assessments of drought under climate change for 
Australia and requires further ratification.  

Approach to developing future drought scenarios  
This work program was designed to build an updated and high-resolution analysis of 
drought under climate change for NSW. This involved work to develop and then 
integrate three main components: 

• the acquisition and empirical downscaling of the most recent climate change 
projection ensemble sourced from the Coupled Model Intercomparison Project 6 
(CMIP 6).  

• Use of new high resolution climate observation data (ANUClimate) at a 1km2 
resolution.  

• the multi-indicator dr
 d1 rought event (Enhanced Drought Information System, EDIS).  

ought monitoring framework used operationally in NSW for 
the 2017-2019

 

The resulting future drought scenarios for NSW are expressed as changes in key 
drought properties (duration and frequency) from a 1995-2014 baseline, the lived 
experience of most land managers including part of the millennium drought sequence.  

Like many assessments of future drought there should be medium confidence placed in 
the future scenarios generated by this methodology. The main limitations of the 
approach are described in more detail below along with some insights into future lines 
of work that may improve confidence.  

  

 
1 The entry of the ‘2017-2019’ drought started in late 2016, while the recovery extended into 2020. 
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Baseline drought risk for NSW 
The historical exposure profile, or statistics of historical risk of drought have been rarely 
published in Australia, so it is important to first consider the baseline scenario to 
interpret the key findings of this study.   

For the 1995-2014 baseline regional NSW spends between 10-20 percent of its time in 
drought conditions, with the average duration of an event between 200-500 days (1 to 
1.5 years).  Drought events can extend to up to 1000 days (2-3 years) in duration.  The 
frequency of drought is moderate-to-high in NSW, with regions experiencing 4-8 
drought events across a 20-year timeframe.  There is spatial variability in baseline 
drought risk between regions, with parts of the coast and isolated regions along the 
Great Dividing Range experiencing some of the most variable conditions.   

Finding 1: Adverse changes to future drought characteristics 
across most of NSW 
This report’s main findings are that even under the low-end greenhouse gas emissions 
scenario in the medium-term future (2041-60), drought events are likely to be 50-200 
days longer, there tend to be 1-3 more events over a 20-year management window, and 
the time spent in drought increases by 10-20 percent for much of the state. 

Under the more severe emissions scenario in the far future (2081-2100), these general 
downside changes to drought characteristics become more pronounced. Drought 
durations lengthen considerably by one to two years, they are relatively frequent events 
in the central to western districts of NSW and the time spent in drought increases by 
20-50 percent in most areas. 

Finding 2: Limited change to drought characteristics in some 
NSW regions 
The generally adverse scenarios described above do not hold for all regions of the state. 
Even in the far future (2081-2100) and under the extreme emissions scenario, drought 
characteristics remain unchanged or may improve slightly in the upper tablelands and 
Great Dividing Range. This region and some parts of the coastal hinterland appear 
partially buffered to future shifts in rainfall and temperature, potentially because of 
their unique topographic position and aspect. 

Finding 3: GCM quality assessment is important at a regional 
level, particularly in Northern NSW 
The main findings of the study, the general state-level forward drought projections and 
scenarios, were not overtly influenced by the main assumptions about methods tested 
in this study. This included the methodology for determining Potential Evaporation (PET) 
and whether to account for Global Climate Model (GCM) quality when analysing a model 
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ensemble. Different PET methods resulted in some minor differences in the forward 
drought scenarios at local scales within regions, but did not change overall trends and 
patterns across the state.  

Although the main findings at state level were robust, the regional and sub-regional 
(farm-to-farm) distribution of results were influenced by aspects of the methodology. 
Accounting for GCM quality did introduced differences at a regional level, particularly 
to the north of NSW under a higher emissions scenario in the far future. For example, 
not accounting for GCM quality could lead to an underestimate of change in average 
drought duration in this part of NSW by 100-200 days when the estimated change signal 
is in the order of a 200-300 day increase. This is likely due to the well-known inter-
model differences across GCM ensembles in estimating the latitudinal position of the 
South Pacific Convergence Zone that affects seasonal variability in northern Australia. 
This re-enforces the need to include regional-level methods, like finer scale climate 
modelling, in this and other ensemble studies in an effort to build more robust future 
climate change scenarios for planning.  

Important limitations and recommendations 
The future drought scenarios for NSW described above are far from definitive planning 
storylines, particularly the identification of positive change in some regions. Analysing 
drought in a changing climate is complex, and the high-resolution methodology (1km2 
grid across NSW) developed for this study is used with full knowledge of its limitations. 
As it used predominantly empirical methods and the land and atmosphere are loosely 
integrated, it does not include some feedbacks like land surface-climate interactions.  
These types of feedbacks and interactions could change the relationships on which the 
methodology is built, and either temper or amplify the regional change patterns of 
drought described in the forward scenarios. 

Given this limitation it is important that decision-makers consider them as interim 
findings and use them as guidance to plan for a wide range of scenarios at this stage, at 
least until the results are ratified in other studies. Regional to sub-regional change 
analyses at the scale of this study are rare, and they lack the multiple lines of evidence 
that underpin the global impact assessments put forward by the IPCC. 

Improving the quality of future regional drought assessments by explicitly including 
feedback is an important undertaking if more definitive planning storylines are required 
at a farm to regional scale. This includes repeating studies like this one with regional 
climate models and paleoclimate reconstructions, as well as application of fully coupled 
land-atmosphere-ocean models.  
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Introduction 
Drought is a major risk for the primary production sector of New South Wales (NSW), 
bringing significant challenges for farmers, industry and governments. In the most 
recent event from 2017-2019, south-eastern Australia experienced a widespread and 
severe drought. While the event had a number of distinct phases, in aggregate, it had 
the longest duration and widest extent across NSW of any drought in recent recorded 
history (Figure 1). 

The direct impacts on the state were large, and the NSW economy experienced an 
estimated $20 billion loss in Gross Domestic Product (GDP) over the three years 
(Wittwer and Waschik 2021). The initial phase of the event was a widespread and 
unprecedented agronomic drought, with acute fodder shortages and lack of agistment 
options for livestock producers. Over time the event intensified into a severe 
meteorological and hydrological drought with associated impacts on water resource 
availability on farms and in rural communities. At this point the event began to 
propagate into a range economic, social and ecological impacts. The mild improvement 
in grass growth conditions and the arrival of unusually warm and dry weather at the end 
of the drought created conditions for widespread bushfires across NSW, which ran from 
late winter of 2019 through the 2019-20 summer. For the agricultural sector, one 
significant cumulative impact was a decline in farm capital across most regions in the 
state, which remained well after the climatic event receded in early 2020 (Wittwer and 
Waschik 2021). 

Australian Governments commit large amounts of resources to within drought 
responses and support measures, as well as investing in resilience building in 
preparation for drought. For instance, the NSW Government committed an estimated 
$4.5 billion to drought response programs for the 2017-2019 event (Regional NSW, 
2022). Over the course of the event farmers in NSW also accessed $200 million from 
one of the Commonwealth Government’s key resilience measures, the national Farm 
Management Deposit (FMD). This is the first fall in the NSW component of the FMD 
since its creation in 1999 (DAWE, 2021). In June 2020, the Commonwealth Government 
created the Future Drought Fund, with a $5 billion commitment at an annual investment 
target of $ 100 million. An estimated $420 million had been allocated to resilience 
programs by the end of 2021 (DAWE 2022). 

Given these impacts and the levels of financial investment in drought management by 
governments, there is considerable interest in how the characteristics of drought 
experienced in NSW could evolve in the medium to long-term future under climate 
change. To plan for the future, decision-makers in government and industry require 
information such as anticipated changes in the frequency, duration and intensity of 
drought events. To develop projected scenarios of drought, this study leverages the 
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operational framework used by NSW Department of Primary Industries (DPI) to monitor 
the 2017-2019 drought, known as the NSW Enhanced Drought Information System 
(EDIS). Scenarios of future drought out to 2100 are produced by running EDIS with an 
ensemble of the latest Global Circulation Models that were downscaled to a regional to 
farm level for this purpose.   

 

Figure 1. Recent NSW drought history (January 1990- April 2023) as depicted by the NSW-Combined 
Drought Indicator (CDI), which is part of the NSW DPI Enhanced Drought Information System (EDIS). Data 
are time series of the percentage area of NSW under drought conditions. 

Guide to the technical report 
This technical report targets both general and technical audiences. The technical report 
can be read selectively depending on the interest and objectives of differing 
stakeholders. The report has been structured with this in mind where: 

• all readers are encouraged to review the Methodology section to understand 
how the drought scenarios were developed. 

• the appendices on Empirical-Statistical Downscaling and Evapotranspiration will 
interest a technical audience seeking more detail about these aspects of the 
methodology. 

• for decision makers, the key section for review is the description of NSW Drought 
Scenarios, although this will be relevant to all readers. 

Background and objectives of this study 
This study forms part of the NSW Climate Change Research Strategy for Primary 
Industries (CCRS). It is part of the Climate Resilience theme of the CCRS and a 
component of the NSW Primary Industries Climate Change Vulnerability Assessment 
(VA). In 2019 an internal desktop review was undertaken (Clark et al., 2019), developing 
the broad objectives of this study: 

• undertake an improved high-resolution projection analysis of drought risk under 
climate change at a regional to farm level across NSW, encompassing a number 
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of biophysical drought indicators spanning meteorological, hydrological and 
agronomic drought. 

• undertake analysis of changes in risk (frequency, duration and intensity) from a 
characteristic drought sequence (for example, 2000-2020). 

This technical report describes the research and development program that underpins 
these objectives.  

Previous analysis of drought under climate change 
The desktop review (Clark et al., 2019) provides an overview of previous global and 
Australian studies that have examined drought in a changing climate. The main insights 
from global-level studies are:  

• in most areas around the world drought events are expected to increase in 
severity and frequency in the future, due to decreasing of regional precipitation 
and increasing evaporation (Sheffield et al., 2012; Dai, 2011; Sheffield and Wood, 
2008; Seneviratne et al., 2012).  

• Trenberth et al., (2014) identified that increased heating as a result of global 
warming may not cause droughts, but it is expected that when droughts occur 
they are likely to set in quickly, be longer and be more intense. This concurs with 
previous global level investigation such as Sheffield and Wood (2008).  

• the global climate drivers of variability and drought (teleconnections like the El 
Niño Southern Oscillation, ENSO, for example) are difficult to project under 
climate change because of uncertainties about feedback between the oceans 
and atmosphere.  

The outcomes of global level studies also apply to Australia, where it has been 
identified that drought is likely to change based on future climate projections 
(Hennessey et al., 2008 , CSIRO and BoM 2015). Based on analysis of available 
observations, Nicholls (2004) identified that each drought was warmer than the previous 
drought arguing that their nature is shifting toward a more arid climate. Similarly, 
Bradley and Timbal (2008) identified that the severity of drought in Australia has been 
increasing given more intense and frequent hot days, heatwaves, and greater 
evaporation derived from changing climate. 

Projections for southeast Australia so far also suggest that: 

• it is likely to be warmer and drier (CSIRO and BoM, 2015), with more extreme fire-
weather days (Hennessy et al., 2005).  

• temperature is projected to rise across the region, with more hot days and fewer 
cool days, and increase the severity and frequency of fire weather with a longer 
fire season (Lucas et al., 2007).  

• annual-average rainfall is projected to decrease in southeast Australia, with a 
greater frequency of severe drought and an increase in drought proportion (with 
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high confidence) compared to the rest country of Australia (CSIRO and BoM, 
2015).   

Based on CMIP4 models, CSIRO and BoM carried out a comprehensive projection 
analysis of meteorological drought at a 50km ~ 200km resolution. In summary, the 
results demonstrated that drought proportion is projected to increase [high confidence] 
over southern Australia, while there is an increase at medium confidence for the rest of 
the country. The exception is northern Australia where the increase has a low 
confidence (Gallant et al., 2013; CSIRO and BoM, 2015). Kirono et al., (2020) repeated 
many features of this meteorological drought projection using CMIP5 projections and 
found that the majority of models project an increase in drought severity, although 
there is a wide range.  
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Methodology  
Overview 
This section outlines the methodology used to develop the scenarios of future regional 
drought for NSW. It is structured around the flow chart in Figure 2 where the main 
elements of the computational projection system that was developed to produce the 
future scenarios are identified. The core aspects of the methodology are the biophysical 
modelling and drought indicators developed for the Enhanced Drought Information 
System (EDIS), with additional features like climate projections, downscaling as well as 
extended drought characterisation and analysis.   

 

Figure 2. Main elements of the computational projection system used to generate future drought scenarios 
for NSW regions. 

The projection system is an example of a top-down loosely coupled modelling 
framework. Different data sets, climate, biophysical and empirical models are 
integrated, but there is no feedback between the main elements. This is particularly 
important when considering the interactions between the landscape and climate system 
through the process of evapotranspiration, which can modify properties of drought 
events at micro and meso-scales. The use of empirical methods to downscale climate 
variables also brings the prospect that non-stationarity may influence the results, where 
models built on past relationships have limited ability to project dynamics as systems 
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change in the future. The modelling system used here contrasts with tightly coupled 
modelling frameworks, like full land-surface schemes or mechanistic agricultural 
models. The approach taken here needs to be considered as one that is practical but has 
limitations revolving around stationarity and system dynamics. There is value in the 
approach, but there is equal merit in pursuing analysis of a complex phenomenon like 
drought using alternative methodologies. 

General design of the regional drought scenarios 
The methodology is outlined in detail in the sections below, providing additional 
information about each of the main elements in the framework. In summary the general 
design features of the future scenarios include:  

• the modelling and analysis were performed on a 1km2 regularised grid across 
NSW.  

• drought characterisation involved the calculation of four statistical properties of 
drought risk and exposure (‘drought climatologies’). This includes the frequency, 
average and maximum duration and time spent in drought.  

• changes in these metrics are determined from a 20-year base period (1995-2014) 
for near future (2041-2060) and far future (2081-2100) time slices.  

• the changes in the future time slices are analysed for low (SSP245) and high 
(SSP545) global emissions scenarios.  

• drought metrics and changes are calculated for a 26-member Global Circulation 
Model (GCM) ensemble sourced from the CMIP6 inter model comparison 
experiment.  

• changes in drought metrics are reported for the ensemble mean using two 
approaches to summarise the 26-member model ensemble, 

o the first is a weighted approach which accounts for GCM quality (skill and 
independence),  

o the second is an unweighted method where all GCMs have an equal 
bearing on the reported mean.  

• two methods for calculating potential evaporative demand (PET) at the 
crop/pasture-atmosphere boundary layer are used. This includes the 
Hargreaves-Samani and Penman-Monteith methods.  

Computation 
The computation projection system was implemented on a Linux cluster with the main 
processing modules developed in MATLAB™.  The system runs in parallel, given the 
computational demand associated with high spatial resolution modelling and drought 
analysis across a 26-member model ensemble. Key tasks to enable parallel processing 
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included the development of custom data storage objects, developing an optimal 
chunking strategy suitable for the available computing resource, as well as re-
engineering some model source code for processor threading. Generally, out of storage 
(in-memory) calculation strategies were implemented to maximise computational 
efficiency. Although only briefly summarised in this report, the computational 
engineering aspects of the project were critical to its successful completion, drawing on 
the time and specialist expertise of the project team.  

Data stores 
Baseline observations 
The gridded climate data used in this study is produced for Australia by Hutchinson et 
al., (2021) and known as ANUClimate2. Station observations of daily climate variables 
are quality controlled and interpolated to a regularised 1km2 grid utilising improved 
Laplacian thin plate smoothing splines (known as ANUSPLIN). Variables include daily 
rainfall, temperature (maximum and minimum), radiation, vapour pressure and potential 
evaporation from the Class A pan evaporation network. This produces a quality-assured 
observational data model at moderate-to-high resolution (1km2). It is utilised in this work 
to construct the downscaling scheme, evaluate the robustness of projections and 
provide a baseline for comparison. 

Climate model projections 
Climate projection data was sourced from the sixth Coupled Model Intercomparison 
Project (CMIP6), basing this study on the most up-to-date ensemble of available future 
climate projections produced by the international community. This consists of quality-
assured output files from the 26 selected GCMs from the endorsed Scenario Model 
Intercomparison Project experiment (ScenarioMIP, Tebaldi et al., 2021). This study 
accessed historical climate as well as future projection climate data generated by the 
models. The future climate data used in the study are from the Tier 1 (high quality 
controlled) model runs, focused on the SSP245 and SSP585 greenhouse gas scenarios 
designed by O’Neill et al., (2016). 

Originally the model output files used in this study were sourced from the Australian 
node of the Earth System Grid Federation (ESGF) CMIP6 data archive, which is held on 
the National Computing Infrastructure (NCI). During the development of the 
downscaling methodology, further climate model output variables were needed. 
Additional data were obtained to support this study from the centralised European node 
of CMIP6. These additional variables are now available for Australian researchers on the 
NCI. Details of the final set of climate variables sourced and used in the study are 
provided in Appendix 1.  

 
2 https://openresearch-repository.anu.edu.au/handle/1885/147476 
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A custom data store was created locally where the GCM output files were further 
processed. The primary GCM data were: 

• analysed and quality assured for completeness in time and space. 
• clipped to the bounding box of the downscaling scheme.  
• converted to the standard meteorological physical units. 
• converted to the Gregorian (standard) time model. 
• re-gridded from their native model geospatial scheme to a scale termed the 

‘common GCM spatial scale’ used in this study. 
• converted to the formats and data objects used in this study. 

This created a consistent and complete GCM ensemble of daily predictor variables from 
1970-2100 for utilisation in the downscaling scheme. Further technical detail is provided 
in the appendix on Empirical Statistical Downscaling. 

JRA-55 Reanalysis 
To develop the downscaling scheme, extensive three-dimensional climate observations 
at the common GCM spatial scale were sourced from the JRA-55 reanalysis3 repository 
produced by the Japanese Meteorological agency. The JRA-55 reanalysis is the latest 
data assimilation scheme where observations and a highly constrained GCM are used to 
reproduce recent historical climate in time and three-dimensional space, including 
vertical atmospheric layers. Similar to the CMIP6 repository, this data was audited and 
reprocessed into the necessary formats and data objects so it could be effectively 
utilised to develop downscaling equations. 

Climate downscaling 
An Empirical Statistical Downscaling (ESD) methodology was developed to translate the 
projections at the GCM scale to the variables that are used for biophysical modelling 
and drought characterisation at the 1km2 grid scale. A full description of the 
downscaling methodology development and evaluation is in Appendix 1. The decision to 
develop a custom ESD scheme was based on a number of considerations: 

• at the time of development outputs were available from a regional climate 
modelling framework (NARCliM version1) based on CMIP 3 models, with updates 
scenarios for south-eastern Australia based on CMIP6 models in production but 
unavailable for this study. 

• other readily available climate projections known as the NRM projection set are 
based on CMIP 5 and available for seasonal or monthly change fields, and were 
not fully suitable for drought risk assessments. 

• the biophysical modelling framework in EDIS uses moderate to high accuracy 
daily climate fields that need variability at this temporal scale to be captured as 
well as cross variable correlation to be preserved, 

 
3 https://jra.kishou.go.jp/JRA-55/index_en.html 



NSW Drought in a Changing Climate 
Technical Report 

17 
 

o this places distinct quality requirements on climate forcing data where, 
for example, the application of the available NARCliM RCM fields would 
have required development of a sophisticated bias correction scheme. 

o the rainfall field is of particular importance in a drought study, and an 
assumption was made that basing the work on a large ensemble of new 
CMIP6 climate model runs should provide an improved estimate of this 
field compared to the available CMIP3 and CMIP 5 ensembles in Australia. 

Deriving Generalised Linear Models 
The Generalised Linear Modelling (GLM) framework was adopted, one of the many 
approaches to ESD that can be used (Benestad et al., 2008, Benestad 2001). As 
described and implemented in Timbal and Jones et al., (2008), GLMs have been used for 
this purpose in both Australia and internationally by a number of authors since the late 
1990s. 

In most previous applications, GLMs have typically been used to downscale GCMs to a 
limited set of individual climate stations (see, for example, Timbal and Jones et al., 
2008). Appendix 1 outlines work carried out that extends GLM approach to downscale 
GCM outputs to the continuous 1km2 grid across NSW. This involved computational 
development to partially automate the selection of candidate predictors for the GLMs 
and step-wise fit over a million GLMs, one for each 1km2 grid cell of NSW. It also 
included developing an approach that addressed potential spatial discontinuity in the 
parameter estimation.  

Application of Generalised Linear Models 
Once derived, the parameters of the GLM models are stored in a specialised data object 
so they are available for production of scenarios. They are applied, given the data from 
each GCM or the JRA reanalysis, to produce climate change scenarios for rainfall, 
minimum and maximum temperature, radiation and vapour pressure at a daily time step 
on the 1km2 NSW grid. These historical and projection series span 1970-2100 for the 26 
models under the two future climate forcing scenarios. This data is used in the next 
steps where to drive EDIS and produce change analysis of future drought as well as for 
evaluation of the overall performance of the approach.  

Biophysical modelling 
DPI AgriMod is the biophysical model used for operational drought monitoring in the 
EDIS framework. It is a state-wide water balance, pasture and crop modelling 
framework that can be run in near real-time with daily, weekly or monthly gridded 
climate data. The model is a simple force-restore water balance which is structurally 
similar to WATBAL (Hutchinson pers com 2008) but uses layer calculations described 
by Rickert et al., (1998); a simplified biogeochemical growth model where the Gross 
Primary Productivity (GPP) equation of Kirschbuam (2015) has been modified for 
grasses, using the Growth Limiting Factor approach described by Nix (1981) for the 
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GROWEST model; and a temperature-radiation crop development function (based on Li 
et al., 2012 and Holzworth et al., 2015).  

A sophisticated model optimisation procedure, using genetic algorithms and a finite 
difference approximation, calibrates the soil and pasture subroutines of the model 
across the NSW spatial domain. The optimisation fits the model to a high-quality but 
shorter-term estimates of plant GPP derived from the 250m2 MODIS data (Donohue et 
al., 2014). Later versions also utilise satellite derived surface soil water products from 
NASA. Using the latest data allows key response systems to be parameterised based on 
the latest biophysical constraints and land use.   

This provides an objective approach to estimating critical thresholds that underpin some 
of the main farming system responses to climate variations: the temperature-dependent 
photosynthesis response of crops and pastures, for example, or the tension at which 
water is held at on the soil matrix for root-phloem-leaf transpiration. This is a different 
methodology than employed in the main CCRS vulnerability assessment which used a-
priori strategies for estimating these critical thresholds.  

Calculation of evaporation 
This study evaluated a number of methods for calculating the maximum potential 
exchange of water from pasture-crop canopy and surface soil to the atmosphere, or 
Potential Evaporation. This evaluation was undertaken because of the potential for PET 
methodologies to introduce bias in a projection study of drought under climate change.  
This issue, and methodological work undertaken for this study, is fully described in 
Appendix 2. To produce the future projections two methods have been used, the 
Hargreaves-Samani and the Penman-Monteith equations.  

Drought indicators 
Daily rainfall, plant available soil water and crop/pasture growth rates are retained from 
the biophysical model and used to calculate drought indicators.  Each day is percentile 
ranked relative to the historical baseline to determine the Rainfall Index (RI), Soil Water 
Index (SWI) and Plant Growth Index (PGI). These are then integrated into a single metric 
of drought, the Combined Drought Indicator (CDI).  

Percentile based indices have been chosen from a wide range of available drought 
indicators used by the global drought monitoring community (for overviews, see Clark 
and Mullan 2011; White and Walcott 2009; Wilhite and Sivakumar et al., 2014). 
Percentile-based indices involve ranking a period of interest relative to those 
experienced in the past (Gibbs and Maher 1967; White and Bordas 1998; Mpelasoka et 
al., 2008). The approach has been well tested in Australian conditions (Gibbs and Maher 
1967; White and Bordas 1998) and is used in EDIS because they are widely understood 
by stakeholders in Australia. The individual indicators include:  
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• Rainfall Index (RI) - Meteorological Indicator: the RI is the percentile rank of daily 
rainfall data summed over a 12 month aggregation window and then ranked 
within the baseline of 1981 - 2020. The practical calculation across millions of 
grid cells is achieved by a computationally efficient method, where data are 
ranked in cumulative distribution functions rather than tied ranks of actual 
historical data. The RI is an index between 0 and 100, where, for any given 
climatic environment, values approaching 0 are close to the driest on the 
historical record, and those approaching 100 are close to the wettest. 

• Soil Water Index (SWI) - Hydrological Indicator: the SWI is calculated using the 
same procedure as the RI but uses a soil moisture field derived from the DPI 
AgriMod soil water balance. Here, the plant available soil water from layer one 
(0-10 cm) and layer two (11-45 cm) are aggregated and used. This has advantages 
as it includes the processes of evaporative demand and rainfall-runoff, thereby 
accounting for rainfall effectiveness for production. 

• Plant Growth Index (PGI) - Agronomic Indicator: the PGI is also calculated using 
the same procedure as the RI but uses the relative crop/pasture growth output 
from DPI AgriMod. If the predominant land use is cropping, according to the 
National Dynamic Land Cover Dataset4, the PGI uses the crop model output. 
Otherwise, it is calculated using the pasture model output. The PGI is an 
agronomic drought indicator which is not only sensitive to soil moisture but also 
seasonal temperature variation, events like frosts, as well as the radiation 
budget. 

• Combined Drought Indicator: The individual drought indices are integrated into a 
single index of drought status (CDI). The CDI was developed to integrate the 
‘multiple definitions’ of drought that underpin the individual indicators. The use 
of a standard scale in the individual drought indicators (percentiles from 0-100) 
supports a straightforward approach to integration, with no need for re-scaling 
or a-priori weighting schemes. The CDI adopts the approach described by 
Svoboda et al. (2002) and Sepulcre-Canto et al. (2012) and applies decision rules 
and thresholds to group conditions into different phases. The phase terminology 
and choices around thresholds were developed and refined iteratively through 
stakeholder engagement. 

When all indices are below the 5th percentile level, conditions are classed as ‘Intense 
Drought’. If any of the indices are below the 5th percentile level, conditions are defined 
as ‘Drought’. Conditions are ‘Drought Affected’ if one of the indices is below the 30th 
percentile. ‘Recovery’ occurs when all indices are above the 30th percentile and below 
the 50th percentile. The time series (Figure 3a) for South Casino in NSW provides an 
example of the CDI and individual indices since 2016. A map of drought intensity on the 
30th of November 2019 is in Figure 3b. These are examples of the routine near real-time 

 
4 https://www.agriculture.gov.au/abares/aclump/land-cover/dynamic-land-cover 
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analysis delivered to the public as web services that also inform the monthly State 
Seasonal Update5. 

The key outputs from EDIS used in this study are the Rainfall (RI), Soil Moisture (SWI) 
and Plant Growth (PGI) drought indicators. Here the minimum of the indices is taken, 
and the 10th percentile used to indicate a drought event. This is equivalent to 
calculating the Drought or Intense Drought categories of the Combined Drought 
Indicator in the operational framework. This study relaxed the threshold from the 5th 
percentile used operationally to the 10th percentile. This was done as a way to account 
for noise in the meteorological indicator to improve the stability of the additional 
drought metric calculations. 

 
5 https://www.dpi.nsw.gov.au/dpi/climate/seasonal-conditions-and-drought/nsw-state-seasonal-update 
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Figure 3. Examples of (a) the individual drought indicators and CDI time series at a specific location and a 
map of the CDI for 30 November 2019. 
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Drought characterisation and analysis 
Drought property analysis 
Droughts are multi-dimensions events, with key partially correlated properties like 
‘frequency’, ‘duration’ and ‘intensity’ that need to characterised to provide a full 
assessment of risk. A formal statistical analysis of drought climatology for a given site 
or region accounts for the multidimensionality through the use of bi-variate and, in some 
cases, tri-variate probability density functions. The shape and correlation structure of 
the function provides a ‘characteristic drought’ profile. Drought risk is depicted by the 
shape and properties of the function and will, for example, differ across regions within 
NSW and for climatic zones around the world. The aggregate risk of drought is 
determined by integrating the area under the probability density function. 

To illustrate this concept the characteristic drought for NSW is provided in Figure 4. 
This example was constructed by aggregating the CDI across the state by calculating 
the extent (land area) and duration (days) of drought events from 1980-2020. The 
probability density function fitted to these calculations (Figure 4) indicates that the 
most common drought events last between 0.5 and 1 year (200-400 days) and affect 
between 20-40 percent of the state. There also are many other types of droughts that 
are less frequent: long duration (two years or more) events, for example, that have a 
wide extent, affecting 70 percent or more of NSW. 

 
Figure 4. Probability density function or ‘characteristic drought’ for NSW. Determined by calculating 
aggregate duration and extent (proportion of NSW) of droughts using the NSW-CDI for 1980-2020. 
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While the bi-variate distribution in Figure 4 is an example of a full quantification of 
drought risk, it is often reported as separate constituent features for ease of 
communication with stakeholders. The regional drought scenarios produced for this 
study report on the following drought properties: 

• average duration of droughts in days. 
• maximum duration of droughts in days. 
• number of drought events in a 20-year period. 
• time spent in droughts as a percentage of a 20-year period. 

Ensemble weighting  
The four metrics that capture some of the main features of drought were derived for 26 
GCMs for two evapotranspiration methods over a near and far future time slice. They are 
expressed as unit changes from a baseline threshold, the drought sequence from 1995-
2014. A weighting scheme was developed so that the reported mean of the 26-member 
ensemble does not overtly reflect models that are performing relatively poorly in 
representing the variable of interest (drought metric), as well as not overtly weighting 
GCMs from a similar model family represented by an independence score. This 
approach was devised by Sanderson (2017) and its technical implementation is provided 
in Appendix 1. 
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Future Drought Scenarios 
Baseline drought climatology 
The baseline drought climatology statistics for the Hargreaves-Samani (HS) and 
Penman-Monteith constant wind (PM) PET methods are in Figure 5. The statistics are 
calculated for a 20-year base period from January 1995 – December 2014. These 
highlight that the characteristic drought profile changes markedly at a regional level 
across the state. The western precinct of NSW spends between 10-15 percent of time in 
drought. This is a relatively shorter period than some sub-regions of the eastern coastal 
fringe, particularly the south-east of the state, which spends over 20 percent of its time 
in drought. Close inspection of these areas highlights that this is likely due to 
topographic or rain shadow effects.  

In the west and some regions along the coast the number of droughts is higher at 
almost 8 across the evaluation window compared to as few as 2-4 in central west of the 
state. The average duration is shorter in the west at 100-200 days, whereas some parts 
of the coastal fringe have and average duration of up to 500 days.  

The maximum drought statistic has a degree of randomness and discontinuity in terms 
of its spatial distribution across NSW, particularly to the west of the state. This is 
because it is an extreme value calculation and subject to both the innate natural 
uncertainty in the climate system as well as error on the underlying data. The baseline 
case established by this data highlights long duration droughts between 500-1000 days 
are experienced across most of the state. There are geographically distinct sub regions 
where the maximum duration recorded is over 1000 days.  

In terms of a reference baseline case, generalising across the state, NSW droughts 
typically have the following characteristics: 

• an average duration of between 200-500 days, with events occasionally 
extending to up to 1000 days. 

• The frequency of drought is moderate-to-high in NSW, with regions experiencing 
4-8 drought events across a 20-year timeframe.  

• NSW regions spend between 10-20 percent of their time in drought.  
• The characteristic drought profile varies across NSW where: 

o The western region of NSW, characterised by high seasonal variability, 
experiences more-frequent shorter-duration droughts. 

o areas such as the central west and tablelands experience fewer droughts 
but they are typically longer in duration when they occur.   

o there are sub-regions where drought exposure increases markedly 
compared to the state and the surrounding climatic zone.  In these areas, 
time spent is drought over a 20-year window may be 20 percent or more, 
they occur with moderate-to-high frequency with up to 8 events in this 
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management window and some of these events have long durations of 
1000 days.  

Interpreting the geographic distribution of these metrics, in particular those for the 
west of NSW, needs to consider the way the drought indicators are constructed and the 
natural climatic environment. The indicators account for periods of deviation (dryness, 
low soil moisture and poor growing conditions) relative to historical conditions in that 
region. They are not indicators of overall aridity. Western NSW is a low rainfall 
rangelands environment where long dry spells are a persistent feature. The distribution 
of daily rainfall is highly skewed, where falls over 20mm are infrequent within a season, 
usually a product of a storm or drift of a frontal system outside of its traditional path. 
Droughts in this part of NSW are events where a land area may miss these intermittent 
events. Typically a fall of this nature appears to be received every 300-400 days, 
leading to the lower average drought duration found in this part of NSW. 
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Figure 5. Baseline drought climatology for NSW showing different drought characteristics.  
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State-wide drought scenarios 
High-level scenarios for future NSW drought are summarised in Figure 6-Figure 9. 
These maps present the weighted and unweighted multimodel mean (26 GCMs) for two 
emissions scenarios in the near future (2041-2060) and the far future (2081-2100). The 
mapped values are changes in key drought metrics from the 1995-2014 baseline. 

The initial obvious interpretation, based on a state-wide examination of the maps, is that 
droughts appear to be getting worse across NSW in the future in all the key drought 
metrics. This holds for both the weighted and unweighted ensemble and the two PET 
methods. The interpretation below provides a more detailed assessment of the patterns 
over time for different emissions scenarios and focus points (drought metrics) of the 
characteristic drought profile. The interpretations focus on describing the weighted 
case for the HS PET method (Figure 6) as being representative of the wider results. 
Some important differences found between the GCM weighting schemes are discussed 
in more detail below.   

Average drought duration 
Average drought duration extends under the more conservative SSP245 emissions 
scenario as early 2041-2060, where in some areas, events last on average up to 100-200 
days longer than experienced in the contemporary baseline. The most extreme regions 
of change appear to be concentrated in the central north west of the state and coastal 
fringe. 

Within this overall trend, there are also regions where little change occurs, particularly 
the upper reaches of the Central, Northern and Southern tablelands. Here average 
drought duration stabilises and even reduces slightly under more extreme emissions 
scenarios in the far future. 

The main effects on average drought duration appear to be proportional to both the 
emissions scenario and become more extreme over the course of the century. For 
example, average drought duration increases between 300-500 days in the far future 
(2081-2100) under the more extreme emissions scenario (SSP585). 

Maximum drought duration 
The effects on the maximum duration metric appear to follow a similar spatial and 
temporal pattern as described for average drought duration. Results for maximum 
drought duration indicate that an extra 100 -200 days could be added to the major 500-
day drought events experienced in recent history. By 2100 the duration of these rare but 
extremely prolonged events would extend by multiple years – the extreme drought 
event of 2100 would be up to twice as long as a long drought in the baseline.  

This metric is designed to provide insight into the changes the longest duration multi-
year drought that could be expected in the 20-year window, compared to that of the 
contemporary baseline. As described for the baseline case, this metric has a degree of 
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randomness and instability. It should be considered the least reliable of the four metrics 
reported in this study.   

Number of droughts 
The number of drought events expected in a 20-year window appears to increase in 
some parts of NSW in the future. There are some zones where decreases occur, such as 
in the far west and north east of the state in the far future. This may be an artifact of the 
correlation of this duration and frequency of drought. As the forward climate scenarios 
become more extreme, droughts become prolonged multi-year events and they begin to 
merge and are counted as one event when accumulating the frequency statistic. 

Despite this, the predominant trend is toward slightly more drought events over a 20-
year window, up to three additional droughts, or for simplicity, approximately one more 
drought to manage per decade. It is important to recognise that this may be a short-
duration, high-intensity event, like a flash drought event in coastal NSW.  

Time in drought 
This metric provides an approximate time spent in drought into the future, inclusive of 
all-drought types, be they long-duration low-intensity or short-duration high-intensity 
events. It is a metric that provides a holistic estimate of drought change. 

The data provide evidence of drought increasing proportionally in line with the 
emissions scenarios and over the course of the coming century. Relatively small 
increases are evident in 2041-2100, with most areas of NSW experiencing 10-20 percent 
more time in drought. The percentage increases are slightly higher for the more 
extreme emission scenario. 

Time spent in drought increases dramatically by the end of the century, particularly 
under the high emissions scenario. Here a 40-50% increase in the time spent in drought 
is expected in the north, north east and much of the coastal fringe of NSW. Other areas 
experience a 20-40% increase. 

Within these main effects, there are sub-regions where the time spent in drought does 
not change substantively, even in the far future under the more extreme emissions 
scenario. This area is concentrated on the upper reaches of the NSW tablelands, 
extending along the spine of the dividing range which transverses NSW. This zone is in 
the high rainfall zone of NSW, where current climate is extremely wet and cool. It is 
likely that its unique typographic setting and aspect negates changes to rainfall 
simulated in the downscaling, as well as the effects of more general warming. It may 
become slightly drier, but in this environment, it does not lead to soil water and pasture 
growth deficiencies. In some cases, the temperature and hydrological regime becomes 
more optimal for growth. This type of effect is not without precedent, where other high-
resolution impact assessments point to the creation of ‘refuges’ in some parts of the 
landscapes given aspect, topography and or soil types.
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Figure 6. Regional to state-wide scenarios of drought for NSW showing the weighted ensemble mean for 
the Hargreaves-Samani (HS) PET method. Data in these maps are changes from the 1995-2014 baseline for 
key drought metrics: the time spent on drought (percentage of a 20-year period), number of droughts 
across the 20-year period, maximum duration of droughts (days) and the average duration of droughts 
(days).  
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Figure 7. Regional to state-wide scenarios of drought for NSW showing the ensemble mean (i.e. equal GCM 
weighting) for the Hargreaves-Samani (HS) PET method. Data in the maps as per Figure 6.  
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Figure 8. Regional-to-state-wide scenarios of drought for NSW showing the weighted ensemble mean for 
the Penman-Monteith constant wind (PM) PET method. Data in the maps as per Figure 6. 
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Figure 9. Regional-to-state-wide scenarios of drought for NSW showing the ensemble mean (i.e. equal GCM 
weighting) for the Penman-Monteith constant wind (PM) PET method. Data in the maps as per Figure 6. 
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The influence of GCM quality 
A comparison of the weighted and unweighted GCM ensemble methods are presented 
for the HS PET method in Figure 10 and the PM method in Figure 11. The bottom panel in 
each figure is a simple change analysis where the unweighted method is subtracted 
from the weighted mean method (labelled ‘Difference Weighted-Mean’).   

For much of NSW, particularly for the near future and under the low emissions scenario, 
there are negligible differences between these two approaches to analysis of GCM 
ensembles. The calculated difference is of the order of ±40 days, against a change 
signal of +100-200 days. For these cases, factoring in GCM quality appears to result in 
negligible differences and it is appropriate to construct general scenarios of drought 
utilising either method.  

In contrast, for analysing GCM ensembles under a higher emissions scenario, 
particularly in the far future, weighting does appear to be important. Large differences 
between the weighted and unweighted methodology are evident particularly to the 
north and northern coastal fringe of NSW. Using the unweighted methodology would 
result in an underestimate of change to drought duration, in the order of 100-200 days, 
in these zones. This is against a projected change signal of 200-400 days, so an 
underestimation of 25-50 percent.  

This result likely reflects the climatology of the region and the divergence in the ability 
of GCMs to capture the geographic patterns of sub-tropical processes at regional 
scales. Northern NSW is in the uniform to slightly summer dominant rainfall zone of the 
state where the latitudinal position of the South Pacific Intertropical Convergence Zone 
has an influence of the climatic regime. It is widely recognised that simulating the inter 
tropical convergence in GCMs is a key area of uncertainty, and as a result there is 
typically a wide inter model variance in ensembles in its summer latitudinal position. 
Projections of Australian rainfall built from the CMIP4, CMIP5 and now the CMIP6 
model ensembles have considerable diversity in the north of NSW, with both positive 
and negative changes in averages for the summer season. 
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Figure 10. Comparison of the weighted ensemble and unweighted (‘Ensemble mean’) average drought 
duration change estimate for the Hargreaves-Samani (HS) PET method.  
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Figure 11. Comparison of the weighted ensemble and unweighted (‘Ensemble mean’) average drought 
duration change estimate for the Penman-Monteith constant wind (PM) PET method.  
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Appendix 1. Downscaled Regional 
Climate Scenarios  
Summary 
This appendix is for a more technical audience, describing the Empirical Statistical 
Downscaling (ESD) methodology used to develop the future climate projections, that in 
turn produce the NSW scenarios of drought. 

The work described on ESD in this chapter is also a stand-alone study with the potential 
for applications beyond this particular drought analysis. The work contributes to the 
scientific field because it addresses a number of limitations that are evident in past 
applications of ESD in Australia: 

It required the acquisition of additional fields from the CMIP6 model ensemble, with 
additional data now available to all interested researchers in Australia through the 
National Computation Infrastructure (NCI). 

It included the development of a robust predictor selection methodology that minimises 
a-priori selection and spatial discontinuities in parameter estimation, thereby allowing 
the scaling of the scheme to produce continuous gridded projections across the state at 
1km2. This is equivalent to the production over a million individual climate station 
projection sets. 

The ESD scheme was developed as a pragmatic customised approach for the purpose of 
projecting future drought. It was pursued in full knowledge of its potential limitations, in 
particular the potential for non-stationarity. The lack of feedback between the earth 
surface and climate system at regional scales, for example, could affect projected 
regional patterns of change. It is important to identify for the reader that the type of 
downscaled projections developed for the purpose of this study are unique, and as such 
other approaches have an equally valid contribution. Readers are strongly encouraged 
to examine work and projections that utilise alternative methods of dynamic 
downscaling of Regional Climate Modelling, in particular the NSW NARCliM program 6 

(Evans et al., 2014). 

Empirical-statistical downscaling (ESD) 
Statistical downscaling took place in two multi-step parts. In the first part, predictors 
are selected from a gridded reanalysis data set (JRA), and the downscaling models are 
built using Generalised Linear Models (GLMs) to predict five climatic variables of 
interest (predictands) to drought modelling. The predictors were linked to historical 

 
6 https://www.climatechange.environment.nsw.gov.au/climate-projections-used-adaptnsw 
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observations of the predictands from the ANUClimate dataset to build the predictive 
models. 

Table 1. Predictands in this study, the five daily climatic variables that are used in the Enhanced Drought 
Information System (EDIS) to model soil water and plant growth responses, and subsequently construct 
drought indices.  

Abbreviation Description 
tmin Daily minimum temperature recorded (°C), measured at 1.5m from the surface. 

From 12am-12pm. 
tmax Daily maximum temperature recorded (°C) measured at 1.5m from the surface. 

From 9am-9am. 
vp Vapour Pressure (hPa, hectopascals). Average 9am-3pm average derived from 

dew point temperature.  
rad Downwelling surface radiation (MJ/M2/day) 
rain Daily rainfall accumulation (mm) in a gauge at 1.5m from the surface.  

In the second part of the methodology, future projection data from CMIP6 is run through 
the calibrated GLM downscaling models to generate projected downscaled climate 
variables. These downscaled variables are then run through the EDIS drought 
framework, starting with the soil water balance model, DPI AgriMod, followed by a 
percentile ranking step to produce drought indices. In this specialised run of DPI 
AgriMod, potential evaporation is estimated using both the Hargreaves-Samani and 
Penman-Monteith equations, the latter forced with a 2 m/s constant wind. For more 
information on the sensitivity of drought to different PET equations, see Appendix 2.  

Processing of the GLMs for each variable was conducted on a virtual Linux operating 
system using MATLAB R2019a (The Mathworks Inc., 2019). Two machines with 48 CPUs 
and 360GB RAM each were used to process multiple variables and chunks at once. To 
facilitate efficient processing, the data was processed simultaneously in geographic 
chunks according to the size of the JRA grids. The ANUClimate data was saved as 
discrete chunks in native MATLAB format (i.e., matfiles) corresponding to the JRA grid in 
which the ANUClimate data was located. This enabled the chunks to be processed in 
parallel using MATLAB’s Parallel Computing Toolbox. 
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Figure 12. Overview of the Empirical Statistical Downscaling (ESD) and drought estimation scheme 
developed in this study.  

Predictor selection 
Predictors were selected in a two-stage process that included a pre-screening cross-
correlation analysis with up to 2-day lags, followed by a manual backward elimination. 
Prior to this formal predictor selection step, the candidate predictors from the JRA 
reanalysis were audited to ensure that they were also available across the CMIP6 
ensemble. For rainfall occurrence, the pre-screening process used distributions of the 
predictors categorised by occurrence or non-occurrence of rainfall. Predictors that 
showed distinct distributions between occurrence and non-occurrence were retained 
for the stepwise logistic regression.  

Table 2 provides the full set of predictors that were subject to screening and selection 
process. The final set of predictors used in the next stage of model calibration are in 
Table 3.  

In the first step of predictor pre-screening for all variables other than occurrence, the 
cross correlation between the observed variable and the predictors at the nearest JRA 
grid point was calculated for 3 lags (0, 1, and 2 days) for each of the 27 predictor 
variables and 939,526 observational grid points. Figure 13 is an example of the pre-
screening process for daily maximum temperature. At each grid point, the maximally 
correlated lag from each predictor was noted. In order to have consistent predictors 
across the state, the predictor-lag combinations that occurred most commonly across 
grid points (>33%) were retained (Figure 13; left). In the next step, the mean spatial 
correlation of all the remaining predictor-lag combinations was calculated and 
predictors with correlations >0.4 at the 5% significance level were retained (Figure 13; 
right). 
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Table 2. The full set of predictors that were obtained for this study where there was availability across both 
the JRA reanalysis and the CMIP6 model ensemble. Naming conventions follows the metadata of the CMIP6 
ensemble archive. 

Abbreviation  Description 

hurSfc Near surface relative humidity 

taSfc Newar surface air temperature 

psl Sea level pressure 

uaSfc Eastward near surface wind 

vaSfc Northward near surface winds 

zg850,500 Geopotential height at 500 and 850 hPa  

hus850,500 Specific humidity at 500 and 850 hPa  

hur850,500 Relative humidity at 500 and 850 hPa 

ta850,500 Air temperature at 500 and 850 hPa 

ua850,500 Eastward near surface wind at 500 and 850 hPa 

va850,500 Northward near surface winds at 500 and 850 hPa 

wap850,500 Vertical atmospheric flux (Omega) at 500 and 850 hPa 

rlds Surface downwelling long wave radiation 

rsds Surface downwelling short wave radiation 

hfls Surface upwelling latent heat flux 

hfss Surface upwelling sensible heat flux 

clt Total cloud cover percentage 

rlus Surface upwelling long wave radiation 

rsus Surface upwelling shortwave radiation  
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Figure 13. Example of pre-screening process as applied to maximum temperature (tmax). Each row is a 
predictor and each column represents the 3 lags of that predictor. (left) The numbers represent the 
percentage of grid cells (n=939,526) where a given lag held the maximum correlation. Lags represented in 
more than 1/3 of grid cells were retained (green) for the next process of screening. In some cases, two lags 
were retained for a given predictor. (right) For the retained predictors, the maximum correlation from the 
first step’s cross-correlation was used to calculate the mean spatial correlation between the predictor and 
predictand. Predictor-lag combinations with a mean spatial correlation of >0.4 were kept for the next stage. 

The remaining predictors were evaluated with principal component analysis and partial 
correlation analysis to eliminate any strongly covarying predictors (Figure 15). Manual 
backward elimination was used to simplify the models so that none contained more than 
five predictor variables. Variables were removed in a stepwise fashion to test whether 
their removal caused a significant drop in the r2 value across a dozen random grid 
points. 
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Figure 14. Example of predictor partial correlations and predictor loadings used to guide manual elimination 
as applied to minimum temperature. Partial correlation matrix of predictors is left. The first and second 
principal components of the predictors are plotted (right). These methods were used to help identify 
strongly covarying predictors and eliminate redundancy. 

For the pre-screening of rainfall occurrence predictors, reanalysis lag-predictor 
combinations were divided into wet and dry groups according to local precipitation at 
each observation grid point. Statistical tests were then performed to select predictors 
of reanalysis data with discrete distributions in the wet and dry day groups. Due to the 
large sample size, a two sample Kolmogorov-Smirnov test was too sensitive (all 
predictors showed discrete continuous populations between wet and dry day groups), 
as was the Wilcoxon rank sum test (all predictors showed discrete medians in wet and 
dry day populations) and therefore unsuitable for eliminating predictors. Instead, an 
elimination criterion was developed whereby the predictor was retained if the median of 
both populations fell outside the interquartile range of the other. 
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Table 3.  Final candidate predictors used in the GLM calibration.  

tmin tmax vp rad rain-occurrence rain- amount 

taSfc_lag1 hurSfc hurSfc hurSfc hurSfc_lag1 hus850_lag1 

hus850 taSfc va850_lag1 rsds rsds rsds_lag1 

va850_lag1 rlus rlds clt_lag1 hus500_lag1 clt_lag1 

clt_lag1  rsds  clt_lag1 pr_lag1 

    va500_lag2  

    7-day Prob Precip  

Generalised Linear Model Calibration and Validation 
A GLM is a form of multiple regression that uses the probability distribution of daily 
climate observations to fit a predictive model, where the observations are assumed to 
be drawn from the same distribution function family (for example, normal or gamma) 
(Yan et al., 2002). GLMs have been previously used for statistical downscaling and have 
been found to perform well (see, for example, Chandler et al., 2005, Asong et al., 2016, 
Beecham et al., 2014, Frost et al., 2011). 

In this study, the GLM is used to downscale normally distributed variables (minimum and 
maximum temperature, radiation, and vapour pressure) using a Gaussian distribution 
and an identity link function. This is equivalent to a multiple linear regression equation. 

Rainfall is modelled as a two-stage process in which the first stage (occurrence) uses 
the logistic regression form of a GLM. The sequence of wet and dry days in the 
predictand can be represented in binary form so that it has a binomial distribution, and 
the monotonic function is of the logit form. 

The threshold for the probability of a predicted value is set as 0.5 such that days with a 
predicted probability of less than 0.5 were marked by a zero or non-occurrence (dry 
day), and days with a predicted probability greater than or equal to 0.5 were marked by 
a one or occurrence (wet day). 

For the second stage, the mean amount of rainfall on a wet day is modelled as 
conditional on the predictor assuming a gamma distribution and a log link function. 

For this study, GLM fitting was performed in a stepwise manner using the stepwiseglm 
function in the MATLAB Statistics and Machine Learning Toolbox (The Mathworks Inc., 
2019). For all variables, the starting model specification was ‘constant’ and up to first-
order interaction terms were permitted. A feature of climate processes is that there is 
commonly an inherent covariation between predictors, and including interactions allows 
these covariations to be represented as linear combinations of multiple predictors 
(Chandler and Wheater, 2002). The r2 was used as a criterion for entry into the model 
with a threshold of 0.001 for entry and 0 for removal. 
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Figure 15. Detailed overview of the model calibration procedure for the ESD scheme. 
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Precipitation correction factor 
After independent calibration of rainfall occurrence and amount (using the observed 
wet days), as part of the rainfall GLM calibration process, the amount model was rerun 
using the results of the occurrence model. This generates the modelled sequence of 
rainfall days using the calibration reanalysis data, in which a systematic underprediction 
of occurrence days and overprediction of mean rainfall was observed, caused by the 
heteroscedasticity inherent to rainfall observations. The underprediction of wet days is 
in contrast with the issues plaguing many GCMs, which suffer from a “drizzle effect” or 
too many wet days (Maraun et al., 2010; Fowler et al., 2007). 

To correct for the over prediction of dry days and rainfall amount in the GLMs, a 
combined quantile mapping and frequency adaptation technique were used to generate 
a correction factor for each GLM. Prior to bias adjustment, it is necessary to determine a 
treatment for rainfall occurrences. This study uses the technique developed by Vrac et 
al. (2016) known as Singularity Stochastic Removal and similarly used in Cannon et al. 
(2015). Prior to bias adjustment, all values less than the wet day threshold (1 mm) in both 
the modelled and observed data are replaced with nonzero uniform random values. 
After bias adjustment, all data lower than the threshold are reset to 0, allowing both 
amount and occurrence to be corrected. The bias adjustment method used here is 
similar to the quantile mapping technique described by Cannon et al., (2015). The 
correction factor, CF, represents the quantile mapped difference between the 
cumulative distribution function (CDF) of the observed calibration rainfall (Xoc) and the 
CDF of the reanalysis modelled rainfall (Xmc) used in the GLM calibration. 

𝐶𝐶𝐶𝐶 =
𝐹𝐹𝑜𝑜𝑜𝑜−1(𝐹𝐹𝑚𝑚𝑚𝑚)
𝐹𝐹𝑚𝑚𝑚𝑚
−1(𝐹𝐹𝑚𝑚𝑚𝑚)

  

Eq. 1 

where the numerator is the CDF of the reanalysis data evaluated at the quantiles of the 
observation data and the denominator is the CDF of the reanalysis modelled rainfall 
evaluated at the quantiles of the reanalysis modelled data, which simplifies to the 
modelled data, Xmc. The CF is stored for later use in the downscaling processing, during 
which the CF is multiplied with the data (X) to be corrected: 

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶𝐶𝐶 ∗  𝑋𝑋  

Eq. 2 

In the calibration, X is the modelled rainfall based on reanalysis, and Xcorr resolves to the 
observed rainfall. During downscaling processing, X is the modelled rainfall using GCM 
data for both historical and projection periods. 

It should be noted that, unlike similar studies, this bias adjustment here is applied only 
to the bias in the GLMs and not to the GCM data. To distinguish between the other use 
of “bias correction” and its use here, we will refer to the bias-adjusted rainfall data as 
‘corrected’, but not ‘bias corrected.’ 
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Model diagnostics 
The performance of the GLM downscaled outputs were evaluated against the 
ANUClimate observations using multiple performance metrics: root mean square error 
(RMSE; Eq. 3), the mean bias (Bias; Eq. 4), the percent or relative bias (%Bias; Eq. 5), and 
the Pearson correlation coefficient (r; Eq. 5) as follows: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
�(𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

Eq. 3 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  
∑ (𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

Eq. 4 

 %𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  
∑ (𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)𝑁𝑁
𝑖𝑖=1
∑ 𝑂𝑂𝑖𝑖𝑁𝑁
𝑖𝑖=1

× 100 

Eq. 5 

𝑟𝑟 =
∑ (𝑀𝑀𝑖𝑖 −𝑀𝑀)(𝑂𝑂𝑖𝑖 − 𝑂𝑂)𝑁𝑁
𝑖𝑖=1

(𝑁𝑁 − 1)𝜎𝜎𝑀𝑀𝜎𝜎𝑂𝑂
 

Eq. 6 

Where Mi and Oi are the modelled and observed values, respectively, N is the number of 
paired observations, M and O, and σM and σO are the averages and standard deviations of 
the respective datasets. 

The metrics were calculated using the annual aggregations of the climate variables for 
the calibration and baseline periods. RMSE values range from 0 to +∞ and RMSE values 
closer to 0 indicate a higher model accuracy. BIAS values range from -∞ to +∞ and 
%BIAS values range from -100 to 100. BIAS and %BIAS values represent the under- or 
over-estimation of the model, and an optimal bias value is close to 0. The Pearson 
correlation coefficient (r) ranges from -1 to 1, where values closer to 1 indicate perfect 
positive correlation. 
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Results 
Performance for climatology 
Figure 17 shows the spatial distributions during the validation period (1996-2019) of the 
bias, relative bias, Pearson correlation coefficient and RMSE for the downscaled 
annually-averaged uncorrected and corrected rainfall, and minimum and maximum 
temperature. 

Uncorrected rainfall shows a systematic negative bias to the observed rainfall and 
progressively higher RMSE from west to east. The northeast coast has RMSE values 
exceeding 400 mm/year. Correlation coefficients exceed 0.8 across most of the state 
with the Greater Sydney area showing the lowest correlation with observed data. There 
is substantial improvement in metrics for the corrected rainfall, with the bias becoming 
less systematic, and very low across most of the state. The correction factor appears to 
overcorrect along the North Coast, with a positive bias becoming evident after 
correction. There is also a slight reduction in r-values across much of the west likely due 
to the introduction of higher variance. There is however an improvement in the Sydney 
area. The RMSE improves considerably across the state (Table 4) in the corrected 
rainfall. 

The GLM for minimum temperature has tendencies to underestimate temperature along 
the coast by up to 1°C, however there are strong correlations across the state (r > 0.7) 
(Table 3). RMSE tends to be less than 0.4°C other than in the northeast corner of the 
state and some other patchy areas. The GLM for maximum temperature performs 
extremely well with r-values greater than 0.9 across most of the state. Maximum 
temperature RMSE tends to be high in the south-west where the negative bias is up to 
1°C. 
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Figure 16. The bias, Pearson correlation coefficients (r), and the root mean square errors (RMSE) between 
the downscaled annual rainfall (uncorrected and corrected), minimum temperature and maximum 
temperature for the validation period (1996 – 2019). The correlation coefficients are significant at the 0.05 
level. 
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Table 4. Spatially averaged statistical scores (Bias, % Bias, r, RMSE) of annual total rainfall and annual total 
corrected rainfall (mm/year) between the downscaled outputs and observations for the validation period 
(1996 -2019). 

Local Land 
Services Region 

Rainfall Rainfall (corrected) 

 Bias % Bias r RMSE Bias % Bias r RMSE 

North Coast -208.73 -16.43 0.82 283.29 105.59 8.51 0.87 207.02 

Murray -110.39 -25.48 0.92 124.26 8.39 2.11 0.91 71.26 

Northern Tablelands -196.21 -23.83 0.81 230.07 14.84 1.42 0.85 125.96 

South East -194.08 -26.43 0.87 211.37 -33.68 -4.72 0.87 104.40 

Riverina -103.07 -22.84 0.93 118.98 17.53 4.12 0.91 70.63 

Central Tablelands -164.81 -23.56 0.89 187.11 8.22 1.14 0.89 91.52 

Hunter -175.81 -20.72 0.75 217.89 57.32 6.08 0.79 144.30 

Greater Sydney -152.76 -17.52 0.78 188.14 29.17 3.25 0.78 124.51 

Western -105.50 -38.56 0.91 121.52 -8.46 -3.55 0.90 62.11 

North West -176.99 -30.85 0.86 200.46 -30.61 -5.45 0.85 113.10 

Central West -138.33 -27.16 0.92 156.00 21.71 3.51 0.91 170.20 

NSW -137.44 -30.32 0.89 159.12 3.53 -0.67 0.88 98.14 

The GLM for minimum temperature has tendencies to underestimate temperature along 
the coast by up to 1°C, however there are strong correlations across the state (r > 0.7) 
(Table 5). RMSE tends to be less than 0.4°C other than in the northeast corner of the 
state and some other patchy areas. The GLM for maximum temperature performs 
extremely well with r-values greater than 0.9 across most of the state. Maximum 
temperature RMSE tends to be high in the south-west where the negative bias is up to 
1°C. 
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Table 5. Spatially averaged statistical scores (Bias, % Bias, r, RMSE) of annual mean minimum and 
maximum temperature (°C) between the downscaled outputs and observations for the validation period 
(1996 -2019). 

Local Land 
Services Region 

Maximum Temperature Minimum Temperature 

 Bias % Bias r RMSE Bias % Bias r RMSE 

North Coast -0.33 -1.35 0.95 0.40 -0.50 -4.18 0.77 0.55 

Murray -0.32 -1.42 0.93 0.42 -0.05 -1.04 0.92 0.22 

Northern Tablelands -0.22 -0.96 0.95 0.34 -0.21 -2.4 0.89 0.31 

South East -0.10 -0.53 0.91 0.34 -0.31 -5.28 0.87 0.39 

Riverina -0.39 -1.67 0.91 0.52 -0.19 -2.11 0.88 0.33 

Central Tablelands -0.32 -1.54 0.90 0.49 -0.27 -3.73 0.76 0.43 

Hunter -0.18 -0.78 0.95 0.33 -0.37 -3.44 0.88 0.42 

Greater Sydney -0.29 -1.30 0.94 0.38 -0.48 -4.37 0.88 0.51 

Western -0.38 -1.43 0.95 0.50 -0.21 -1.65 0.88 0.31 

North West -0.26 -0.97 0.93 0.46 -0.12 -1.08 0.89 0.28 

Central West -0.21 -0.85 0.93 0.46 -0.16 -1.43 0.86 0.34 

NSW -0.30 -1.22 0.93 0.46 -0.22 -2.18 0.87 0.34 

Performance for drought 
The ability of downscaled climate (‘model’) variables to estimate drought is examined by 
calculating the relative bias from drought estimates derived from observations. This is 
performed from the 20th Century runs of the CMIP6 models for both PET 
methodologies (Figure 17). Relative bias is defined as the difference between the model 
and the observations normalised by the observations. It is expressed as a percentage 
difference. A negative relative bias means the model underestimates the observations, 
while a positive bias indicates an overestimation of the observations. Relative bias 
between the modelled and observed drought metrics was used to evaluate the 
performance of the downscaling method, weighting method, and individual GCMs. The 
individual GCM relative bias for the 10th percentile threshold drought metrics averaged 
over NSW for both PET methods is presented in Figure 17, with GCMs sorted from 
lowest to highest absolute value of relative bias. 
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Figure 17. Spatially averaged relative bias for four drought metrics and 2 PET schemes at the 10th 
percentile threshold. avgDur10 is the average duration of drought, maxDur10 is the maximum drought 
duration, nDroughts10 is the number of droughts and percTime10 is the percentage of time spend in 
drought. HS is the Hargreaves-Samani PET method while PM is the Penman-Monteith method with constant 
wind run. GCMs are organised from least to greatest bias top to bottom for each drought metric.  

At the 10th percentile threshold, most GCMs are overestimating metrics relating to the 
duration of drought (i.e., average and maximum duration, percent time) relative to the 
ANUClimate observations between 1995-2014. The biases range from 0 to ~60% for 
duration, and to about 20% for percent time. The frequency metric (number of droughts) 
shows a more normalised distribution of residuals, ranging from approximately -20 to 
20% relative to observations. Generally, the Penman-Monteith PET-based metrics show 
a slightly larger bias than those calculated using Hargreaves-Samani, though these 
differences are relatively small for historical bias. Due to this result, subsequent 
summary plots will be shown using the HS results, however, results for PM are available 
and the implications for future projections are discussed in the main body of the report.  

The bias found for a GCM is dependent on metric and there is limited consistency across 
the models (Figure 17). For example, ACCESS-CM2 performs well in capturing average 
duration but is ranked low for number of droughts and is in the middle range of the 
other two metrics. Similarly, CESM2-WACCM has the smallest bias for percent time and 
the highest for number of droughts. As previously shown in the skill weighting section, 
NorESM2-MM performs poorly across most metrics. 
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Implications for this study-GCM ensemble weighting scheme 
The varied ability of the downscaling scheme to estimate observed climatology, as well 
as the downscaled CMIP6 ensemble to estimate observed properties of drought, 
requires careful consideration. Results range from encouraging where there appears to 
be acceptable biases and errors, to those where they would clearly lead to projections 
that have limited confidence. 

The variability in bias across the GCM to reproduce the variable of interest (drought 
metrics) needs to be balanced against the use of ‘model ensemble means’ to build 
future projections.  Ensemble approaches are used to aggregate model results and 
provide an estimate of the most likely future scenarios. Equally weighted multi-model 
means (or medians) are commonly used to evaluate ensemble results of projection 
studies as the ensemble mean is considered to be more representative than any single 
model. Recent studies have suggested using weighted ensembles that give more weight 
to models with higher skill and account for model independence (Sanderson et al., 2017, 
Knutti et al., 2017, Skahill et al., 2021). Subsequent ensemble results are shown using 
the skill-weighted ensemble mean. 

In this study, we apply the skill and independence weight metric developed by 
Sanderson et al., (2017) to the ensemble using all the 10th percentile threshold metrics. 
The combined weighting method used here combines the relative skill of each model 
with a metric of independence, giving higher scores to less similar models and models 
with lower relative RMSE with the observations. To calculate the skill weight (Eq. 7), the 
RMSE between each GCM and observations for metrics of interest is calculated and 
normalized to the mean RMSE for that metric, such that the mean model has a value of 
1, and GCMs with values less than one have relatively higher skill (Figure 18). 

The combined RMSE matrix is used to calculate skill weight as follows: 

𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) = 𝑒𝑒
−�

𝛿𝛿𝑖𝑖(𝑜𝑜𝑜𝑜𝑜𝑜)
𝐷𝐷𝑞𝑞

�
2

 
 

Eq. 7 

where δi(obs) is the median of the normalized individual RMSEs for all metrics between 
each model i and the observations, and Dq is the radius of model quality, which 
determines the strength of the skill weighting (small values of Dq place more weight n 
models with higher skill). In this study, a value of 0.9 is used for Dq. 

To calculate the independence score, an intermodel RMSE distance matrix is calculated 
for between all GCMs for a given metric and normalized by the mean RMSE for that 
metric. Higher intermodel distances are indicative of higher independence and lower 
similarity to other models. The mean inter-model distance, δij, between models i and j for 
all metrics is used to calculate the similarity score S(δij): 
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�
2

 
 

Eq. 8 

where Du is the radius of similarity, a parameter that specifies the distance scale for 
which the models’ co-dependence is down-weighted. Du is calculated as the 1.5th 
percentile of δij, in this case, ~0.75. The final independence score, wind is calculated as 
the reciprocal of the sum of the similarities scores: 

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) = �1 +�𝑆𝑆(𝛿𝛿𝑖𝑖𝑖𝑖)
𝑛𝑛

𝑖𝑖≠𝑗𝑗

�

−1

 

Eq. 9 

where n is the total number of models. 

Finally, the final GCM combined skill and independence weight (Table 6) is calculated 
using both the skill weight and independence weight normalized by a constant, A, such 
that the weights across all models sum to one: 

𝑤𝑤(𝑖𝑖) = 𝐴𝐴𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖)𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) 

Eq. 10 
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Figure 18. Model skill matrix for multiple drought metrics (columns) based on normalised RMSE. Values 
greater than 1 indicate models with poorer skill, and values less than 1 indicate models with higher skill. 
Models are sorted by the median skill across all metrics used for weighting (δi(obs); shown in the final 
column). 
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Figure 19. RMSE intermodel distance matrix used to quantify the independence scores. The intermodel 
distance matrix is calculated as the mean of the RMSE scores between models for each drought metric 
used in the skill scores, normalised to the mean of the matrix.  Red colours (high values) indicate highly 
independent models while green colours (lower values) depict higher dependence or similarities. 
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Table 6. Independence, skill and combined weights for the multi-model ensemble. Models are sorted in 
descending order by combined weight. 

CMIP6 Model Ind. Weight Skill Weight Combined 

CESM2 0.150 0.540 0.053 

HadGEM3-GC31-LL 0.149 0.529 0.051 

CNRM-CM6-1 0.150 0.502 0.049 

INM-CM4-8 0.211 0.338 0.047 

NorESM2-LM 0.153 0.467 0.046 

CanESM5 0.154 0.458 0.046 

MRI-ESM2-0 0.174 0.381 0.043 

EC-Earth3-CC 0.141 0.449 0.041 

CNRM-ESM2-1 0.186 0.337 0.041 

MPI-ESM1-2-HR 0.158 0.395 0.041 

IITM-ESM 0.194 0.319 0.040 

EC-Earth3-Veg 0.177 0.348 0.040 

UKESM1-0-LL 0.155 0.394 0.040 

CMCC-CM2-SR5 0.166 0.366 0.039 

ACCESS-ESM1-5 0.206 0.287 0.038 

CESM2-WACCM 0.399 0.147 0.038 

INM-CM5-0 0.221 0.252 0.036 

MIROC-ES2L 0.157 0.353 0.036 

MPI-ESM1-2-LR 0.307 0.176 0.035 

ACCESS-CM2 0.178 0.302 0.035 

EC-Earth3 0.195 0.249 0.032 

MIROC6 0.200 0.232 0.030 

FGOALS-g3 0.285 0.152 0.028 

EC-Earth3-Veg-LR 0.263 0.156 0.027 

IPSL-CM6A-LR 0.271 0.135 0.024 

NorESM2-MM 0.557 0.062 0.023 
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Figure 20 shows the ensemble median and skill-weighted ensemble of the relative 
biases for the 10th percentile HS PET method. Though Figure 20 indicates spatially-
averaged positive biases, there is actually substantial variation in the biases across the 
state. Negative biases in duration and percent time are observed in the central-west and 
south-east of the state. The use of the weighted ensemble reveals substantial 
reductions in the bias for all duration metrics. There is some increase in bias for number 
of droughts, but this increase is smaller in magnitude than the reduction gains achieved 
in duration. Therefore, the weighted ensemble is used for presenting future results. 

 

 

Figure 20. (first row) Multimodel median of relative bias for the 10th percentile threshold and HS PET 
(unweighted); (second row) Ensemble using skill-based weighting; (third row) The difference between the 
weighted ensemble bias and the ensemble median bias. Blue values indicate a reduction in the overall 
relative bias of the ensemble. 
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Appendix 2. Evapotranspiration 
methodology  
Background 
Evapotranspiration is an important flux process to account for when developing future 
scenarios of drought, and this section is concerned with selecting an appropriate 
methodology for this study. Along with precipitation, it is a major component of the 
hydrological cycle. Evapotranspiration, the exchange of water from the earth’s surface 
to the lower atmosphere, influences the intensity and duration of a drought as well as 
the timing of entry and recovery. The rate of evapotranspiration is determined by the 
ambient climate, principally radiation and temperature, with secondary factors like wind 
and vapor pressure also affecting the process. Surface properties, including albedo and 
vegetation condition, also modify the rate of exchange. 

The regulation of evapotranspiration by temperature links drought risk to the warming 
trends evident under anthropogenic climate change. It is common to assume that future 
droughts will increase in intensity as temperatures rise. However, the strength of this 
assumption is the subject of physical and methodological debate. For example, the 
radiation budget or latent heat (energy) required for evaporation at differing air 
temperatures is affected by cloud and may dampen the average rate of 
evapotranspiration as the atmosphere becomes more tropical in a warmer climate. This 
type of regulation of the evapotranspiration process and the strength of feedback is 
regionally specific, given latitude effects on seasonal radiation and shifts in future 
tropical convection. 

There are also methodological factors in the calculation of evapotranspiration rates 
which can influence drought determination (Box 1 provides some examples of the main 
technical approaches). Simple empirical temperature or radiation driven approaches 
could create biases because they don’t include key feedbacks, like the effects of 
humidity on vapour pressure and are overly sensitive to temperature trends. More 
physically based and complex approaches like the Penman-Monteith equation include 
factors like wind, which then brings in limitations around the quality of forcing data. 
Most approaches do not capture the full suite of dynamic feedbacks between 
vegetation and the lower atmosphere through the evapotranspiration process, which 
requires the use of a fully coupled land-atmosphere-ocean model. Evapotranspiration is 
also difficult to measure in the field, and there is only a limited observational network to 
validate different approaches across NSW. 

The system used to quantify drought in this study (EDIS and DPI AgriMod) adopts the 
common approach of calculating potential evapotranspiration (PET). PET is the demand 
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for water by the lower atmosphere at the standard assumed boundary layer of 
crop/pasture canopy, a height of 1.5m from the earth’s surface. Here: 

• PET is derived from constituent standardised climatic variables (for example, 
rainfall, temperature) and used as an input to the AgriMod soil water balance 
where actual evapotranspiration (AET) is determined. 

• no partitioning between bare soil (evaporation) and stomatal conductance of 
water (transpiration) is made in the model, although AET is regulated by pasture 
and crop vigour. 

While this approach has merit and is well validated, it is relatively simple. It does not 
encapsulate the full set of dynamic feedback processes between crops, pastures and 
the lower atmosphere that may occur under a warmer, more carbon dioxide enriched 
environment. There are also different methodologies available to calculate PET which 
could affect drought determination. Given this limitation and to build a practical 
methodology, the approach taken in this study has been to: 

• proceed with the construction of future drought scenarios with full knowledge of 
the limitations of the EDIS system. 

• to aid the interpretation of the regional drought scenarios, develop more detailed 
knowledge of the implications of different PET determination methods by 
undertaking some exploratory analysis. 
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Box 1- Examples of the general types of evapotranspiration models 

Mechanistic 

The FAO’s derivation of the Penman-Monteith equation (Monteith and Unsworth 1990, Allen et al., 1998) is a reference 
mechanistic approach because it is based on a full range of processes influencing transfer of water to the 
atmosphere, including resistance from soil and plants. An example FAO-56 (Doorenbos and Pruit, 1977 version of the 
Penman-Monteith equation is: 

𝑬𝑬𝒑𝒑 = 𝜟𝜟(𝑹𝑹𝒏𝒏−𝑮𝑮𝒔𝒔)+𝟖𝟖𝟖𝟖.𝟒𝟒𝟒𝟒𝒄𝒄𝒑𝒑𝜹𝜹/𝒓𝒓𝒂𝒂
𝝀𝝀(𝜟𝜟+𝜸𝜸)

       

where Ep is potential soil evaporation, ∆ is the slope of the saturated vapour pressure deficit curve (kPa °C-1), Rn is the 
net radiation (MJ m-2 d-1), Gs is the soil heat flux (MJ m-2 d-1), ρ is the air density (kg m-3) Cp the specific heat of the air (kJ 
kg-1 °C-1) and δ the vapour pressure deficit (kPa), ra the aerodynamic resistance (s m-1), λ the latent heat of vaporization 
(MJ kg-1) and γ is the psychometric constant (kPa °C-1). 

Conceptual 

There are also simpler algorithms based on partial representations of processes, such as Priestly-Taylor, Blaney-
Criddle and Hargreaves-Samani Ep (Allen et al., 1998). The radiation-based Priestly-Taylor equation is reproduced 
here as an example. It calculates Ep as a function of the latent heat of vaporization and the heat flux in a water body: 

𝑬𝑬𝒑𝒑 = 𝜶𝜶� 𝒔𝒔
𝒔𝒔+𝝀𝝀

� �(𝑸𝑸𝒂𝒂−𝑸𝑸𝒙𝒙)
𝑳𝑳

�        

where α is an empirically defined constant, s is the slope of the saturated pressure temperature gradient, λ is the 
psychometric constant, Qx is the change in heat stored in a water body (MJ/m2/day), L is the latent heat of vaporization 
(MJ/kg) and Qn is the net radiation supplied as an independent variable (MJ/m2/day). 

Empirical 

It is also possible to model evapotranspiration empirically. For example, Xu and Singh (2002) derived a modified form 
of the Blaney-Criddle algorithm: 
 

𝑬𝑬𝑬𝑬 = (𝝀𝝀𝝀𝝀)(𝑻𝑻 + 𝜷𝜷)         
where R is incoming shortwave solar radiation, and T is the mean air temperature (°C/week). The parameters λ and β 
are constants obtained by calibration and the equation is known to exhibit moderate to high accuracy when well 
calibrated (Xu and Singh, 2002). 

 

Exploratory analysis 
Evaporation models for NSW 
As a step towards building an informed approach to the methodology for determining 
PET in this study some exploratory analysis was undertaken, initially looking at different 
forms for calculation, their sensitivity to different climate forcing and implications for 
determination of drought. In this study one conceptual and two form of mechanistic PET 
models are trailed:  

• the Conceptual Hargreaves-Samani model (HS). 
• the mechanistic Penman-Monteith equation where wind is held constant (PM-C). 
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• the mechanistic Penman-Monteith equation where wind data is obtained from a 
separate historical experimental data set provided by the CSIRO (PM-W).  

Using observation data (ANUClimate) as forcing variables, Figure 22 plots the average 
annual evaporation derived from a conceptual (HS) and the two mechanistic models. 
The fourth representation are PET observation, interpolated from the sparse (<30 site) 
class A Pan network. All the plots are broadly similar in that they capture the east to 
west gradient in annual PET across NSW. The magnitude of the flux is comparatively 
higher in western NSW in the observation data. There are fine, subtle regional 
differences in the rates of different PET models. The rate of annual average PET 
changes in the coastal hinterland of northern NSW, for example, depends on whether 
observed or constant wind is used in the Penman Monteith equation. 

 
 

Figure 21. Annual average potential evaporation comparison analysis for 1975 to 2004 for pan evaporation; 
Hargreaves-Samani method; FAO56 Penman-Monteith method; and FAO56 Penman Monteith with constant 
wind method.   

Sensitivity of evaporation to climate forcing 
To better understand the baseline processes forcing PET fluxes across NSW, the 
sensitivity of class A Pan observations to changes in different climate variables was 
assessed (Figure 22). This is based on the methodology described by McCuen et al. 
(1974). The closer the sensitivity metric in Figure 22 is to a value of 1 the stronger the 
relative contribution of the forcing variable is to the PET flux. The results in Figure 22 
suggest that the regional distribution of radiation forcing is relatively uniform across 
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regional NSW. There are dramatic differences in the sensitivity of PET to shifts in 
maximum temperature between regions, while minimum temperature has a relatively 
small effect on PET in NSW. Similarly, vapour pressure (vp) and the vapour pressure 
deficit (vpd) have pronounced regional differences. 

 

 

Figure 22. Local Land Services Region distribution of the sensitivity of mean annual potential evaporation 
(PET) to changes in climate forcing (solar radiation, temperature and vapor pressure). 

The sensitivity analysis methodology devised by McCuen et al., (1974) was the adapted 
to examine the relative contribution of forcing on PET for the HS and PM-W equations in 
both drought and non-drought periods (Table 7). The analysis highlights that the 
amplifying effect of radiation and maximum temperature on PET are amplified during 
drought periods, and the dampening effect of VP is similarly increased during a drought. 
These effects are greater in magnitude when utilising the PM-W determination of PET. 
Wind, in the framework of PM-W, amplifies PET during droughts and dampens the flux 
in non-drought years. 

Table 7. PET sensitivity to climate forcing in drought and non drought years (1975-2020). Data are 
aggregated across NSW. 

Drought 
Period  

rad  Tmax  Tmin  vp  vpd  wind speed  

  HS  PM-W  HS  PM-W  HS  PM-W  HS  PM-W  HS  PM-W  HS  PM-W  

Non-drought*  0.380  0.784  0.526  0.555  0.045  0.049  -0.276  -0.393  -0.622  -0.701  0.031  -0.262  

Drought+  0.435  0.900  0.597  0.726  0.100  0.215  -0.352  -0.589  -0.531  -0.586  -0.035  0.226  

*Non-drought years are 1976-1982, 1985-1995, and 2011-2016. +Drought years are 1996-2010 and 2017-2022 

Evaporation and drought characterisation 
To evaluate the implications of using differing PET methodologies on the 
characterisation of drought in NSW, the EDIS system was re-run from 1975-2020 using 
the HS and the PM-W methodology. To undertake the analysis, the CDI was converted 
into a continuous rather than categorical metric by taking the minimum of the three 
indices, described as the Minimum Drought Index or MDI for clarity. 
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The scatter plots in Figure 23 show the relationship between the two methods across 
NSW, where colour coding is used to show the strength of the correlation for individual 
data points. Generally, there is a strong positive correlation between the methods, 
indicating that there is limited effect on PET on the value of drought indicators across 
their full range. Close inspection of the data also reveals that the correlations do 
weaken in some ranges of drought indicators, particularly in the range that is close to or 
below the value that would signify a drought event (the 5th-30th percentile). This 
suggests that drought determination in most of NSW is not overtly sensitive to PET 
methodology selection, but there are sub regions where it will be influential. Importantly 
in this small number of cases, the HS method would overestimate drought in 
comparison to the PM-W method. 

 
Figure 23. Scatter density plot between Hargreaves-Samani (HS) and Penman-Monteith (PMO using the 
PM-C method) driven monthly drought indicators in NSW from 1975 – 2020. Each data point in space 
represents the spatial average of the PET-driven indicator. The Soil Water Indicator, Plant growth Indicator 
and Combined Drought Indicator are from the EDIS system.  The colours represent the correlation 
coefficient between the PET-indicators of individual data points in the NSW domain. 

This pattern of results is explored further by closely examining how the two 
methodologies would have determined the 2017-2020 drought sequence (Figure 24). 
The MDI time series (c) highlights strong agreement during the drought onset and 
extension period in 2016 through to 2019. Differences begin to emerge in terms of the 
rate of drought recovery window where the amplifying effect of maximum temperature 
on the ETo rate from the maximum temperature in the PM-W method would lengthen 
the drought window. Figure 24 (a and b) are spatial plots of the mean MDI during the full 
drought sequence. While structurally similar, there are some small sub regional 
differences if the data is inspected closely. 

Based on this analysis, the differing PET methodologies on the historical period 
presented in this section they appear to be broadly similar, and there would be little 
difference between them in terms of state-wide drought determination at a large scale. 
However, sub-regional differences are evident and need to be considered for land 
holders in those regions where they may be greater exposure to shifts in temperature 
and vapour pressure. The pragmatic choice for this study at this point is to utilise the 
Hargreaves-Samani methodology, simply because it negates the need to utilise wind 
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data where there are significant quality deficiencies in Australia’s daily observation as 
well as the concerns about modelled wind-run projections. However, because the 
analysis is undertaken in the historical window, there may be further non-stationarity 
effects that also need to be identified. The choice of PET methodology is revisited in the 
section on downscaling and reported in the section describing NSW Drought scenarios. 

Figure 24. The influence of potential evaporation method on the characterisation of 2017-2020 drought 
across NSW. (a) map of the average MDI (2016-2021) using the Hargreaves-Samani (HS) PET method.  (b) 
map of the average MDI (2016-2021) using the Penman-Monteith with fill wind (PM-W) PET method. (c) The 
time series of spatially averaged MDI for NSW using both the HS (red) and PMO-C (blue) methods. 
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